Historical Leaf Area Index (1968-1999) simulated by MAPSS using NCEP climate

Aug 5, 2011
Description:
Simulated Leaf Area Index by the biogeography model MAPSS using S. Hostetler's (USGS) climate data (detailed information available at http://regclim.coas.oregonstate.edu/domains.html).

MAPSS (Mapped Atmosphere-Plant-Soil System) is a static biogeography model that projects potential vegetation distribution and hydrological flows on a grid (http://www.databasin.org/climate-center/features/mapss-model). MAPSS has been used widely for various climate change assessments including the 2000 National Assessment Synthesis Team's report.

MAPSS uses long term, average monthly climate data (mean monthly temperature, vapor pressure, wind speed, and precipitation) as well as soils information (texture, depth). Based on a set of climatic thresholds, the model defines the following plant functional types: evergreen needleleaf or broadleaf trees/shrubs, deciduous broadleaf or needleleaf trees/shrubs, C3 and C4 grasses. The model uses thresholds of LAI and climatic zone thresholds to identify potential vegetation types.

The model simulates surface runoff, infiltration, saturated, and unsaturated percolation through the soil profile. Transpiration is constrained by available soil water, leaf area, and stomatal conductance. The model calculates the leaf area index (LAIs) for both woody (either trees or shrubs) and grass lifeforms competing for light and water, while maintaining a site water balance consistent with observed runoff (Neilson 1995). Water in the surface soil layer is apportioned to the trees and grasses in relation to their relative LAIs and stomatal conductance, i.e., canopy conductance, but trees have access to deeper soil water while grasses do not. Stomatal conductance varies as a function of potential evapotranspiration (PET, a surrogate for vapor pressure deficit) and soil water content.

An elevated CO2 has been documented to affect vegetation responses to climate change through changes in carbon fixation and water-use-efficiency (WUE, carbon atoms fixed per water molecule transpired). The MAPSS model has been run under the A2 emission scenario imposing an increase in water use efficiency such that at 700pm CO2, transpiration is reduced by 25%.
Data Provided By:
Ron Neilson, USFS and for current project results: Dominique Bachelet and Ken Ferschweiler. Additional information on the model and its availability: http://www.databasin.org/climate-center/features/mapss-model
Content date:
not specified
Citation:
Neilson, R.P. (1995) A model for predicting continental scale vegetation distribution and water balance. Ecol. Appl. 5:362-385.

Spatial Resolution:
15 km x 15 km
Contact Organization:
 Conservation Biology Institute, USFS
Contact Person(s):
  • Raymond Drapek (drapek@fsl.orst.edu),Dominique Bachelet (dominique@consbio.org)
Use Constraints:
The model code is publically available from the Oak Ridge model repository (http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=853) with documentation.
Layer:
Layer Type:
Currently Visible Layer:
All Layer Options:
Layers in this dataset are based on combinations of the following options. You may choose from these options to select a specific layer on the map page.
Description:
Spatial Resolution:
Credits:
Citation:
Purpose:
Methods:
References:
Other Information:
Time Period:
Layer Accuracy:
Attribute Accuracy:
FGDC Standard Metadata XML
Click here to see the full FGDC XML file that was created in Data Basin for this layer.
Original Metadata XML
Click here to see the full XML file that was originally uploaded with this layer.
This dataset is visible to everyone
Dataset Type:
Layer Package
Downloaded by 3 Members
Included in 1 Public Map , 2 Private Maps
Included in 1 Public Gallery

About the Uploader

Conservation Biology Institute

The Conservation Biology Institute (CBI) provides scientific expertise to support the conservation and recovery of biological diversity in its natural state through applied research, education, planning, and community service.