Simulated runoff under CSIRO Mk3 A2 (2070-2099 average) in millimeters for the Pacific Northwest, USA

May 21, 2010
Description:
For his MS thesis, Brendan Rogers used the vegetation model MC1 to simulate vegetation dynamics, associated carbon and nitrogen cycle, water budget and wild fire impacts across the western 2/3 of the states of Oregon and Washington using climate input data from the PRISM group (Chris Daly, OSU) at a 30arc second (800m) spatial grain. The model was run from 1895 to 2100 assuming that nitrogen demand from the plants was always met so that the nitrogen concentrations in various plant parts never dropped below their minimum reported values. A CO2 enhancement effect increased productivity and water use efficiency as the atmospheric CO2 concentration increased. Future climate change scenarios were generated through statistical downscaling from general circulation model output using anomalies and a climatology from the PRISM group at 30arc second spatial grain. Data came from three General Circulation Models (CSIRO Mk3, MIROC 3.2 medres, and Hadley CM 3), each run through three CO2 emission scenarios (SRES mild B1, moderate A1B, and warm and dry A2).
Data Provided By:
Brendan Rogers
Content date:
2070,2099
Citation:
Title: Simulated runoff under CSIRO Mk3 A2 (2070-2099 average) in millimeters for the Pacific Northwest, USA
Credits: Brendan Rogers
Other Citation Info: Bachelet D., R.P. Neilson, J. M. Lenihan, and R.J. Drapek. 2001. Climate change effects on vegetation distribution and carbon budget in the U.S. Ecosystems 4:164-185. Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, P. P. Pasteris, and N. USDA. 2008. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Gordon, H. B. 2002. The CSIRO Mk3 Climate System Model. CSIRO Atmospheric Research Technical Paper No. 60. CSIRO Atmospheric Research. Hasumi, H., and S. Emori, eds. 2004. K-1 Coupled GCM (MIROC) description. K-1 Model Developers Tech. rep. 1, 34 pp. Johns, T. C., J. M. Gregory, W. J. Ingram, C. E. Johnson, A. Jones, J. A. Lowe, J. F. B. Mitchell, D. L. Roberts, D. M. H. Sexton, and D. S. Stevenson. 2003. Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios. Climate Dynamics 20, no. 6: 583-612.
Contact Organization:
UC Irvine
Contact Person(s):
Use Constraints:
Creative Commons LicenseThis work is licensed under a Creative Commons Attribution 3.0 License.
Layer:
Layer Type:
Currently Visible Layer:
All Layer Options:
Layers in this dataset are based on combinations of the following options. You may choose from these options to select a specific layer on the map page.
Description:
Spatial Resolution:
Credits:
Citation:
Purpose:
Methods:
References:
Other Information:
Time Period:
Layer Accuracy:
Attribute Accuracy:
FGDC Standard Metadata XML
Click here to see the full FGDC XML file that was created in Data Basin for this layer.
Original Metadata XML
Click here to see the full XML file that was originally uploaded with this layer.
This dataset is visible to everyone
Dataset Type:
Layer Package
Downloaded by 1 Member
Bookmarked by 1 Member , 1 Group
Included in 1 Public Map
Included in 2 Public Galleries

About the Uploader

Conservation Biology Institute

The Conservation Biology Institute (CBI) provides scientific expertise to support the conservation and recovery of biological diversity in its natural state through applied research, education, planning, and community service.